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LETTER TO THE EDlTOR 

Painlev6 analysis of new soliton equations by Hu 

S Yu Sakovich 
Institute of Physics. Academy of Sciences, F Skaryna Avenue 68. Minsk 72. Belms 

Received 5 May 1994 

ALw.tra% We @om the singularity analysis of four new generalized bilinear equations by 
Hu, of which two possess two-soliton solutions and Be other two possw even thesol i ton 
solutions. AU four equations fail to pass the Painlev6 test for integrability. exhibiting non- 
dominant movable logarithmic singularities at highest reSonanCes of generic branches. 

Recently, Hu [l] proposed a new generalization of Hirota's bilinear equations, derived 
conditions for the existence of multi-soliton solutions, and quoted six examples of such 
generalized bilinear equations. Hu [l] pointed out that two of the examples have been 
known as integrable equations by Tu [21 and by Harada 131, and proved for the other four 
examples that two equations possessed two-soliton solutions and two equations possessed 
even three-soliton solutions. Are the four new equations by Hu integrable as well? Existence 
of a twc-soliton solution does mf guarantee integrability of a bilinear equation, and a three 
soliton solution is only conjectured to be sufficient for integrability [4]. Moreover, checking 
conditions for the existence of N-soliton solutions is too tedious .even for low N. Therefore, 
instead of proving the existence of N-soliton solutions for higher and higher N, we will 
employ another test for integrability, namely, the Painlev6 test by Weiss et a1 [5]. In this 
letter, we will show that, because of bad singularity structure of solutions, none of the 
four new soliton equations by Hu should be expected to be integrable. We will follow the 
Weiss-Kruskal algorithm of PainlevC analysis [6], omitting unessential details. 

D e  lirst nonlinear system to be tested, namely, 

ut = U X X  + 2 U U X  + U, ut + 6uxu.r (1) 

has a two-soliton solution [l]. This is a noimal system of total order five, a hypersurface 
p(x, t )  = 0 is non-characteristic for (1) if px # 0, and the general solution of (1) must 
contain five arbitrary functions of one variable [7]. We analyse singularities of solutions 
at non-characteristic hypersurfaces only [SI, use &e Kruskal ansatz [9] px = 1 ,  and 
assume the dominant behaviour of solutions of (1) to be algebraic: II = uo(t)pa + . . . 
and U = uo(f)@ + . . ., where 01 and j3 are complex contants, uouo # 0. System (1) admits 
several branches (i.e. choices of 01, 8, ug and UO), of which we consider the following two 
as most stnlang; (i) 01 = f i  = -1, uo = 1, U&) is arbitrary, and (ii) 01 = -1, ,3 = -2, 
uo = 2, uo = -2. In case (i), positions r of resonances are r = -1.0,1,2,5, where r = -1 
corresponds to arbihary $0) in p = x + $, so that (i) is the generic branch. Substituting 
U = C L  u&)pk-' and U = CEO q(t)p"-' into (I), we get recursion relations for up and 
uk, and then check compatibility conditions at resonances. At r = 1 and 2, where arbitmy 
functions u1 ( t )  and uz(t) appear, we get identities. However, a complicated third-order 
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differential equation qttr + . . .~= 0 for +, UO. u1 and uz arises at r = 5, which forces us to 
modify the Weiss-Kruskal expansions by introducing a logarithmic term at ,this resonance 
161. Therefore system (1) fails to pass the Painlev6 test for integrability. Moreover, branch 
(ii) has resonances in positions -2, -1, 2 and i fm, so that we could have stopped 
the singulariw analysis even at the step of finding resonances. 

Next we consider the nonlinear system 

U: = U,, + 3uuxx + 3 4  + 3uzu, + U, 
U, = + 6 ~ x ~ x  (2) 

which has a threesoliton solution [I]. The same way (with the same notations) as for 
system (1) leads us to the conclusion that (2) fails to pass the Painlev.5 test as well. The 
generic branch, where a = /3 = -1, uo = 1, and U&) is arbitrary, has resonances 
at r = - l , O ,  1, 1,3,5.  At r = ~1 and 3, where arbitrary functions ul(f), U,@) and 
u j ( t )  appear, compatibility conditions are satisfied identically, but this is not the case at 
r = 5, where a first-order differential equation for +, UO, u1 and u3 arises. Moreover, 
one of several non-generic branches, namely, that with CY =~ -1, 
and uo = -b has resonances in irrational positions, i.e. r is -1 or 3 or any root of 
3r4 - 18r3 - 107r2 + 122r 3.560 = 0. 

= -3, uo = 3 

Starting the Painlev6 analysis of the system 
2 2  U:: - U, + U' - U, - U = 0 

U:* - U,, + 2u(ur: - UXJ = 0 (3) 

which has a three-soliton solution [l], we are faced with the absence of any algebraic 
dominant behaviour of solutions. This is caused by a dominant logarithmic singularity in U. 
In this respect, system (3) is similar to the sine-Gordon equation [5] and the Liouville 
equation [lo]. The transformation a(y ,  z) = expu, b ( y ,  z )  = U, y = &(t + x )  and 
z = h(t - x )  (cone co-ordinates y and z are used for simplicity) changes (3) into the 
equivalent system 

(4) 
which admits several branches of algebraic dominant behaviour of solutions, a = ao(z)p=+ 
. . . and b = bo(z)y,/ + . . ., rp = y + +(z) .  +z # 0 since y,  = 0 must be non-characteristic 
for (4). In the generic branch, where CY = 1, /3 = -1, and a&) and bo(z) are arbitrary, we 
find resonances to be r = -1, 0, 0,3 and get at r = 3 a complicated third-order differential 
equation for +, 00 and be. Therefore system (4) has a non-dominant logarithmic singularity 
in its general solution. In non-generic branches, resonances stand in integer positions, but 
we will not check compatibility conditions, since (4) has failed the Painlev6 test in the 
generic branch. 

ay= - a b  = 0 a2byz - 2bayaz + 2azb2 = 0 

Lastly we have to test the following generalized bilinear equation 

(Q - o:,rca, - a:)?]. z = 0 (5) 

where 4 and Dx are Hirota's bilinear operators, 3, and 8, are partial derivatives, 
5 = ~ ( x ,  t ) .  Equation (5) has a two-soliton solution and is suspected of having a three 
soliton solution [I]. The transformation U = tz/r and U = (a,? - a:?)/r changes (5) into 
the system 

= ada, + U ) ~ U  + U, 
ut = vxxzxz +20uz~.rxs + l O ( ~ x x x  + 64)u.x (6) 
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which is similar to (1) and (2) in form. The same way (with the same notations) as for (1) 
shows that (6) fails to pass the Painlev6 test,= well. The generic branch, where a = p = -1, 
uo = 1, and uo(t) is arbitrary, has resonances at r = -1,0,1. 1,2,2.3,3,5,9. Again, ai 
the highest resonance, r = 9, we are forced to introduce a logarithmic term. Moreover, (6) 
possesses many non-generic branches with dominant transcendent singularities, but we will 
not consider them. 

Thus, we have established that, unfortunately, none of the four new soliton equations 
by Hu [I] pass the Painlevt Lest for integrability. This is, however, raof a defect in Hu’s 
generalization of Hirota’s bilinear equations but a random feature of some of the examples 
selected by Hu for [l]. Indeed, two more examples of generalized bilinear equations quoted 
in 111, namely, the integrable systems by Tu [2] (ut =U, +2u,  U, = -2aru) and by Harada 
[3] [U, = uxI + 2uu, - 2u,, U, = U,, + 2u,u}, pass the Painlev6 test well. We have to 
conclude that even the existence of a three-soliton solution may not lead to integrability. 
Certainly, correctness of this conclusion depends on the reliability of the Painlevt test. Some 
integrable equations have no Painlevt property by themselves, but they can be transformed 
so that the Painlev.6 property can be restored (e.g. the sine-Gordon equation [5] and the 
Dym-Kruskal equation [ll]). However, general solutions of Hu’s new soliton equations 
possess non-dominant logarithmic singularities which, as is generally believed [6,121, cannot 
be removed by any transformations. 
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